A NILM dataset is a valuable tool in the development of Non-Intrusive Load Monitoring techniques, as it provides a means of evaluation of novel techniques and algorithms, as well as for benchmarking. The figure of merit of a NILM dataset includes characteristics such as the sampling frequency of the voltage, current, or power, the availability of indications (ground-truth) of load events during recording, the variety and representativeness of the loads, and the variety of situations these loads are subject to. Considering such aspects, the proposed LIT-Dataset was designed, populated, evaluated, and made publicly available to support NILM development. Among the distinct features of the LIT-Dataset is the labeling of the load events at sample level resolution and with an accuracy and precision better than 5 ms. The availability of such precise timing information, which also includes the identification of the load and the sort of power event, is an essential requirement both for the evaluation of NILM algorithms and techniques, as well as for the training of NILM systems, particularly those based on Machine Learning.
A multi-agent architecture for a Non-Intrusive Load Monitoring (NILM) solution is presented and evaluated. The underlying rationale for such an architecture is that each agent (load event detection, feature extraction, and classification) outperforms others of the same type in particular scenarios; hence, by combining the expertise of these agents, the system presents an improved performance. Known NILM algorithms, as well as new algorithms, proposed by the authors, were individually evaluated and compared. The proposed architecture considers a NILM system composed of Load Monitoring Modules (LMM) that report to a Center of Operations, required in larger facilities. For the purposed of evaluating and comparing performance, five load event detect agents, five feature extraction agents, and five classification agents were studied so that the best combinations of agents could be implemented in LMMs. To evaluate the proposed system, the COOLL and the LIT-Dataset were used. Performance improvements were detected in all scenarios, with power-ON and power-OFF detection improving up to 13%, while classification accuracy improved up to 9.4%.
Abstract. Machine Learning methods have been widely used in bioinformatics, mainly for data classification and pattern recognition. The detection of genes in DNA sequences is still an open problem. Identifying the promoter region laying prior the gene itself is an important aid to detect a gene. This paper aims at applying several Machine Learning methods to the construction of classifiers for detection of promoters in the DNA of Escherichia coli. A thorough comparison of methods was done. In general, probabilistic and neural network-based methods were those that performed better regarding accuracy rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.