Excess dietary salt-intake is an established cause of hypertension. At present our understanding of the neuro-pathophysiology of salt-sensitive hypertension is limited by a lack of identification of the central nervous system mechanisms that modulate sympathetic outflow and blood pressure in response to dietary salt-intake. We hypothesized that impairment of brain Gαi2 protein-gated signal transduction pathways would result in increased sympathetically mediated renal sodium retention, thus promoting the development of salt-sensitive hypertension. To test this hypothesis, naïve or renal denervated Dahl salt-resistant and Dahl salt-sensitive rats were assigned to receive a continuous intracerebroventricular control scrambled or a targeted Gαi2 oligodeoxynucleotide infusion, and naïve Brown Norway and 8-congenic Dahl salt-sensitive rats, were fed a 21-day normal or high-salt diet. High salt-intake did not alter blood pressure, suppressed plasma norepinephrine, and evoked a site-specific increase in hypothalamic paraventricular nucleus Gαi2 protein levels in naïve Brown-Norway, Dahl salt-resistant and scrambled oligodeoxynucleotide-infused Dahl salt-resistant, but not Dahl salt-sensitive rats. In Dahl salt-resistant rats Gαi2 down-regulation evoked rapid renal nerve-dependent hypertension, sodium retention and sympathoexcitation. In Dahl salt-sensitive rats, Gαi2 down-regulation exacerbated salt-sensitive hypertension via a renal nerve-dependent mechanism. Congenic-8 Dahl salt-sensitive rats exhibited sodium-evoked paraventricular nucleus specific Gαi2 protein up-regulation and attenuated hypertension, sodium retention and global sympathoexcitation compared to Dahl salt-sensitive rats. These data demonstrate that paraventricular nucleus Gαi2 protein-gated pathways represent a conserved central molecular pathway mediating sympathoinhibitory renal-nerve dependent responses evoked to maintain sodium homeostasis and a salt-resistant phenotype. Impairment of this mechanism contributes to the development of salt-sensitive hypertension.