This work suggests a type-2 fuzzy lead–lag (T2FLL) controller structure for flexible AC transmission system (FACTS)-based damping controllers and power system stabilizers (PSSs) for power system stability improvement. The values of the suggested controller are optimized by a hybrid adaptive differential evolution and pattern search algorithm (hADE-PS) method. Initially, a single-machine infinite-bus (SMIB) system with lead–lag (LL)-structured FACTS and PSS controllers is considered, and the dominance of the hADE-PS method is established over the original differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). The supremacy of T2FLL over the lead–lag (LL) controller is established under different large and small disturbance conditions, as well as varied loading conditions and fault positions. Lastly, the effectiveness of T2FLL is evaluated in a multimachine power system (MMPS). It is demonstrated that the suggested T2FLL offers better performance than the LL controller under various large and small disturbance conditions by providing significantly more damping to all modes of oscillations.