Current airspace is sectorized according to some predefined rules that are not flexible. To facilitate utilizing the airspace more efficiently, methods to design sectors need to be promoted. In this paper, we propose an undirected graph cut-based approach that employs a memetic local search-embedded constrained evolution algorithm, NSGA-II, to generate nondominated airspace configurations. We also propose a new concave hull-based method to automatically depict sector boundaries. In addition, we also study the configuration transition problem. We define the similarity of the two different configurations and calculate their similarity with a bisection diagram and a minimum cost flow algorithm. We build a forward network to represent configuration transitions across several consecutive time periods and use multiobjective dynamic programming to determine a series of nondominated configuration links from the first period to the end. We test our approaches by simulation in high-altitude airspace controlled by Beijing Area Control Center. The results show that our sectorization method outperforms the current configuration in practice, providing a lower sector number, lower intersector flow, more balanced workload distribution among the different sectors, and no constraint violations, so that the proposed approach shows its significant potential as practical applications for dynamic airspace configuration.