Retinal blood vessels are the only deep microvessels in the blood circulation system that can be observed directly and noninvasively, providing us with a means of observing vascular pathologies. Cardiovascular and cerebrovascular diseases, such as glaucoma and diabetes, can cause structural changes in the retinal microvascular network. Therefore, the study of effective retinal vessel segmentation methods is of great significance for the early diagnosis of cardiovascular diseases and the vascular network’s quantitative results. This paper proposes an automatic retinal vessel segmentation method based on an improved U-Net network. Firstly, the image patches are rotated to amplify the image data, and then, the RGB fundus image is preprocessed by normalization. Secondly, after the improved U-Net model is constructed with 23 convolutional layers, 4 pooling layers, 4 upsampling layers, 2 dropout layers, and Squeeze and Excitation (SE) block, the extracted image patches are utilized for training the model. Finally, the fundus images are segmented through the trained model to achieve precise extraction of retinal blood vessels. According to experimental results, the accuracy of 0.9701, 0.9683, and 0.9698, sensitivity of 0.8011, 0.6329, and 0.7478, specificity of 0.9849, 0.9967, and 0.9895, F1-Score of 0.8099, 0.8049, and 0.8013, and area under the curve (AUC) of 0.8895, 0.8845, and 0.8686 were achieved on DRIVE, STARE, and HRF databases, respectively, which is better than most classical algorithms.