The new coronavirus, which has become a global pandemic, has confirmed more than 88 million cases worldwide since the first case was recorded in December 2019, causing over 1.9 million deaths. Since COIVD-19 lesions have clear imaging features on CT images, it is suitable for the auxiliary diagnosis and treatment of COVID-19. Deep learning can be used to segment the lesions areas of COVID-19 in CT images to help monitor the epidemic situation. In this paper, we propose a multi-point supervision network (MPS-Net) for segmentation of COVID-19 lung infection CT image lesions to solve the problem of a variety of lesion shapes and areas. A multi-scale feature extraction structure, a sieve connection structure (SC), a multi-scale input structure and a multi-point supervised training structure were implemented into MPS-Net. In order to increase the ability to segment various lesion areas of different sizes, the multi-scale feature extraction structure and the sieve connection structure will use different sizes of receptive fields to extract feature maps of various scales. The multi-scale input structure is used to minimize the edge loss caused by the convolution process. In order to improve the accuracy of segmentation, we propose a multi-point supervision training structure to extract supervision signals from different upsampling points on the network. Experimental results showed that the dice similarity coefficient (DSC), sensitivity, specificity and IOU of the segmentation results of our model are 0.8325, 0.8406, 09988 and 0.742, respectively. The experimental results demonstrated that the network proposed in this paper can effectively segment COVID-19 infection on CT images. It can be used to assist the diagnosis and treatment of new coronary pneumonia.
Computer-aided automatic segmentation of retinal blood vessels plays an important role in the diagnosis of diseases such as diabetes, glaucoma, and macular degeneration. In this paper, we propose a multi-scale feature fusion retinal vessel segmentation model based on U-Net, named MSFFU-Net. The model introduces the inception structure into the multi-scale feature extraction encoder part, and the max-pooling index is applied during the upsampling process in the feature fusion decoder of an improved network. The skip layer connection is used to transfer each set of feature maps generated on the encoder path to the corresponding feature maps on the decoder path. Moreover, a cost-sensitive loss function based on the Dice coefficient and cross-entropy is designed. Four transformations—rotating, mirroring, shifting and cropping—are used as data augmentation strategies, and the CLAHE algorithm is applied to image preprocessing. The proposed framework is tested and trained on DRIVE and STARE, and sensitivity (Sen), specificity (Spe), accuracy (Acc), and area under curve (AUC) are adopted as the evaluation metrics. Detailed comparisons with U-Net model, at last, it verifies the effectiveness and robustness of the proposed model. The Sen of 0.7762 and 0.7721, Spe of 0.9835 and 0.9885, Acc of 0.9694 and 0.9537 and AUC value of 0.9790 and 0.9680 were achieved on DRIVE and STARE databases, respectively. Results are also compared to other state-of-the-art methods, demonstrating that the performance of the proposed method is superior to that of other methods and showing its competitive results.
A new flavonoid, 6-(2-hydroxy-5-carboxyphenyl)-apigenin (1), together with two new natural products, 3-(4-hydroxyphenyl)-6,7-dihydroxy coumarin (2), 1-methoxy-3-methylanthraquinone (3) and four known compounds, were isolated from Selaginella tamariscina (BEAUV.) SPRING. The structures of the new isolated compounds were elucidated on the basis of 1D and 2D NMR as well as ESI-HR-MS spectroscopic analysis.
A new selaginellin derivative, selaginellin M (1), together with one known compound, selaginellin E (2), was isolated from Selaginella pulvinata. The structure of the new compound was elucidated and named as (R,S)-4-((4'-hydroxy-4-((2-hydroxyethoxy)methyl))-3-((4-hydroxyphenyl)ethynyl)biphenyl-2-yl)(4-hydroxyphenyl)methylene)cyclohexa-2,5-dienone on the basis of the spectroscopic data including UV, IR, 1D, and 2D NMR as well as HR-ESI-MS analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.