For recursive circular filtering based on circular statistics, we introduce a general framework for estimation of a circular state based on different circular distributions, specifically the wrapped normal distribution and the von Mises distribution. We propose an estimation method for circular systems with nonlinear system and measurement functions. This is achieved by relying on efficient deterministic sampling techniques. Furthermore, we show how the calculations can be simplified in a variety of important special cases, such as systems with additive noise as well as identity system or measurement functions. We introduce several novel key components, particularly a distribution-free prediction algorithm, a new and superior formula for the multiplication of wrapped normal densities, and the ability to deal with non-additive system noise. All proposed methods are thoroughly evaluated and compared to several state-of-the-art solutions. system measurement publication distribution model noise model noise Azmani, Reboul, Choquel, Benjelloun [9] von Mises identity additive identity additive Markovic, Chaumette, Petrovic [14] von Mises-Fisher identity additive identity additive Kurz, Gilitschenski, Julier, Hanebeck [21] Bingham identity additive identity additive Kurz, Gilitschenski, Hanebeck [15] wrapped normal/von Mises nonlinear additive identity additive Kurz, Gilitschenski, Hanebeck [16] wrapped normal nonlinear additive nonlinear any this paper wrapped normal/von Mises nonlinear any nonlinear anyTable 1: Circular filters based on directional statistics.There has been some work on filtering algorithms based on circular statistics by Azmani et al. [9], which was further investigated by Stienne et al. [10]. Their work is based on the von Mises distribution and allows for recursive filtering of systems with a circular state space. However, it is limited to the identity with additive noise as the system equation and the measurement equation. The filter from [9] has been applied to phase estimation of GPS signals [11], [12] as well as map matching [13]. Markovic et al. have published a similar filter [14] based on the von Mises-Fisher distribution, a generalization of the von Mises distribution to the hypersphere.We have previously published a recursive filter based on the wrapped normal distribution allowing for a nonlinear system equation [15]. The paper [16] extends this approach to make a nonlinear measurement update possible. Both papers rely on a deterministic sampling scheme, based on the first circular moment. This kind of sampling is reminiscent of the well-known unscented Kalman filter (UKF) [2]. We have extended this sampling scheme to the first two circular moments in [17], so the proposed filters are, in a sense, circular versions of the UKF.The developed filters have been applied in the context of constrained tracking [18], bearings-only sensor scheduling [19], as well as circular model predictive control [20].Furthermore, we proposed a recursive filter based on the circular Bingham distribution in [21]....