2008
DOI: 10.1016/j.cviu.2007.09.001
|View full text |Cite
|
Sign up to set email alerts
|

A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
73
0
7

Year Published

2011
2011
2020
2020

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 221 publications
(80 citation statements)
references
References 20 publications
0
73
0
7
Order By: Relevance
“…Untuk mengatasi masalah ini, Hammouche dkk. [10] menggunakan genetic algorithm (GA) yang mengoptimasi ATC yang diajukan Yen, dkk. Metode GA pada penelitian tersebut memiliki peranan yang sangat besar dalam menentukan titik-titik threshold pada histogram derajat keabuan, sehingga dapat menentukan jumlah threshold yang sesuai dan nilai threshold yang memadai.…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Untuk mengatasi masalah ini, Hammouche dkk. [10] menggunakan genetic algorithm (GA) yang mengoptimasi ATC yang diajukan Yen, dkk. Metode GA pada penelitian tersebut memiliki peranan yang sangat besar dalam menentukan titik-titik threshold pada histogram derajat keabuan, sehingga dapat menentukan jumlah threshold yang sesuai dan nilai threshold yang memadai.…”
Section: Pendahuluanunclassified
“…Meski memiliki peranan dalam proses optimasi ATC [10], GA yang digunakan sebagai metode dalam menentukan jumlah, posisi, dan nilai threshold pada segmentasi citra mungkin saja terjebak dalam solusi local optimal. Mengingat beberapa kelemahan GA yaitu dapat konvergen secara dini (premature convergence) dan tanpa positive feedback, sehingga tidak ada jaminan bahwa solusi yang diberikan adalah solusi yang terbaik (global optimal) yang tentu saja berpengaruh langsung terhadap hasil thresholding.…”
Section: Pendahuluanunclassified
“…Tao et al [8] presented a three-level thresholding method that uses the GA to find the optimal thresholds by maximizing the fuzzy entropy. Hammouche et al [9] proposed a multi-level thresholding method, which allows the determination of the appropriate number of threshols as well as the adequate threshold values. However, GA has some drawbacks such as slow convergence rate, premature convergence to local minima.…”
Section: Introductionmentioning
confidence: 99%
“…Beside PSO, GAs technique has also been used to solve the multi-level thresholding problems as well as computer vision tasks (Scheunders, 1996;Tao et al, 2003;Yin, 1999;Hammouche et al, 2008;Cao et al, 2008). GAs are probabilistic search algorithms based on the mechanics of natural selection and naturally occurring genetic operations.…”
Section: Introductionmentioning
confidence: 99%
“…However, in these studies, the time-consuming issue had to be dealt with when the threshold number increased. The best proposed method so far in terms of the accuracy of image segmentation and computation time was developed by Hammouche et al (2008), which used a combination of GA and wavelet transform. Recently, GA with a novel learning strategy, the strongest scheme in each iterative computation, was proposed to accelerate the convergence speed for multilevel thresholding by Cao et al (2008).…”
Section: Introductionmentioning
confidence: 99%