Under-race lubrication can increase the amount of lubricating oil entering a bearing and greatly improve lubrication and cooling effects. The oil-air two-phase flow characteristics inside a ball bearing with under-race lubrication play a key role in lubrication and cooling performance. The motions of ball bearing subassemblies are complicated. Ball spin affects the oil volume fraction. In this paper, the coupled level set volume of fluid (CLSVOF) method is used to track the oil-air two-phase flow inside the ball bearing with under-race lubrication. The influence of various factors on the oil volume fraction inside the ball bearing with under-race lubrication is investigated, particularly rotating speeds, inlet velocity and the size of oil supply apertures under the inner ring. The influence of the ball spinning is analyzed separately. The result demonstrates that, on account of the centrifugal force, lubricating oil is located more on the outer ring raceway at rotational speeds of 5000 r/min, 10,000 r/min, 15,000 r/min and 20,000 r/min. The oil volume fraction inside the bearing gradually increases at an oil inlet velocity of 5 m/s, 10 m/s and 15 m/s. The circumferential distribution of oil is also similar. As the diameter of the oil supply aperture increases from 1.5 mm to 2 mm, the oil volume fraction increases inside the ball bearing. However, the oil volume fraction slightly decreases from 2 mm to 2.5 mm of oil supply aperture diameter. Ball spin does not affect the circumferential distribution trend of the lubricating oil, but slightly reduces the oil volume fraction. Furthermore, ball spin causes the surface fluid to rotate around its rotation axis and increases the speed.