The increasingly prevalent emergence of drug-resistant virus strains in patients being treated with highly active antiretroviral regimens and the increasing rates of transmission of drug-resistant virus strains have focused attention on the critical need for additional antiretroviral agents with novel mechanisms of action and enhanced potency. Furthermore, novel means of employing highly active antiretroviral therapy are needed to reduce or eliminate the virological treatment failures that currently occur. Over the past several years, evidence has mounted supporting the fact that the emergence of resistant strains is associated with reductions in viral fitness, yielding decreases in plasma virus load in treated patients harbouring resistant populations of the virus. Additional mutations that serve to modify fitness (compensatory mutations) and mutations that impact the viral replication capacity also emerge under the selective pressure of drug treatment, and have both negative and positive effects on virus growth. Fitness is generally accepted to refer to the ability of HIV to replicate in a defined environment and thus is used to describe the viral replication potential in the absence of the drug. Although viral fitness and replication capacity are related in some ways, it is important to recognise that viral fitness is not the same as viral replication capacity. This review will assess the recent literature on antiviral drug resistance, viral fitness and viral replication capacity, and discuss means by which the adaptability of HIV to respond rapidly to antiviral treatment through mutation may be used against it. This would be done by treating patients with an aim to lock the deleterious mutations into the resistant virus genome, resulting in a positive therapeutic outcome despite the presence of resistance to the selecting agents. The review will specifically discuss the literature on nucleoside and non-nucleoside reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors, fusion inhibitors, as well as other biological factors involved in viral fitness.