Background Gait analysis is acknowledged as the main approach for quantitatively assessing the alteration of motor function in different contexts, such as in basic research and clinics. Technological development is making available smart and wearable sensors (inertial Abstract Background: Machine learning models were satisfactorily implemented for estimating gait events from surface electromyographic (sEMG) signals during walking. Most of them are based on inter-subject approaches for data preparation. Aim of the study is to propose an intra-subject approach for binary classifying gait phases and predicting gait events based on neural network interpretation of sEMG signals and to test the hypothesis that the intra-subject approach is able to achieve better performances compared to an inter-subject one. To this aim, sEMG signals were acquired from 10 leg muscles in about 10.000 strides from 23 healthy adults, during ground walking, and a multi-layer perceptron (MLP) architecture was implemented. Results: Classification/prediction accuracy was tested vs. the ground truth, represented by the foot-floor-contact signal provided by three foot-switches, through samples not used during training phase. Average classification accuracy of 96.1 ± 1.9% and mean absolute value (MAE) of 14.4 ± 4.7 ms and 23.7 ± 11.3 ms in predicting heel-strike (HS) and toe-off (TO) timing were provided. Performances of the proposed approach were tested by a direct comparison with performances provided by the inter-subject approach in the same population. Comparison results showed 1.4% improvement of mean classification accuracy and a significant (p < 0.05) decrease of MAE in predicting HS and TO timing (23% and 33% reduction, respectively). Conclusions: The study developed an accurate methodology for classification and prediction of gait events, based on neural network interpretation of intra-subject sEMG data, able to outperform more typical inter-subject approaches. The clinically useful contribution consists in predicting gait events from only EMG signals from a single subject, contributing to remove the need of further sensors for the direct measurement of temporal data.