Background: Curcumin, a polyphenol derived from the herb turmeric, has emerged as a promising potential therapy in the management of Alzheimer’s disease (AD). However, the efficacy and potential therapeutic mechanisms remains largely unknown. Objective: To systematically meta-analysis the effect and to investigate the potential pharmacological mechanisms of curcumin on cognitive deficits in AD. Methods: A systematic collection of curcumin studies was performed from MEDLINE’s database, PubMed, Web of Science, and Google Scholar until October 31th, 2020. Following quality assessment of study eligibility, stratified meta-analysis and meta-regression analyses were undertaken to recognize and control the heterogeneity in meta-analysis. An integrated network pharmacology and molecular docking approach were applied to decipher the potential pharmacological mechanisms of curcumin on AD. Results: A meta-analysis of 29 publications showed that curcumin exerts significantly positive effects on cognitive performance. For acquisition, the global estimated effect of curcumin was -2.027 (95% CI: -2.435 to -1.619, p<0.001); For retention, the global estimated effect of curcumin was 1.606 (95% CI: 1.101 to 2.111, p<0.001). Stratified meta-analysis demonstrated that an increased effect size depended on various study characteristics. Network pharmacology analysis identified 63 genes targets, and STAT3, CHEK1, AKT1, EGFR, MMP9, hsp90AA1, and EP300 were core target proteins. Molecular docking showed that curcumin can closely bind with these seven targets. Besides, 69 potential pathways of curcumin were identified, like nitrogen metabolism.Conclusions: Our findings suggested that curcumin may reduce cognitive deficits in AD through multi-target and multi-pathway mechanism, providing a scientific basis for further experimental and clinical application.