2023
DOI: 10.1016/j.eswa.2023.119660
|View full text |Cite
|
Sign up to set email alerts
|

A network surveillance approach using machine learning based control charts

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
10

Relationship

2
8

Authors

Journals

citations
Cited by 23 publications
(8 citation statements)
references
References 69 publications
0
7
0
1
Order By: Relevance
“…Trabalhos recentes (Yeganeh et al, 2023;Lee, 2023) fizeram abordagens de controle de processos integradas ao machine learning para evitar erros na interpretação de gráficos, devido ao grande volume de dados gerados nos processos produtivos. Os gráficos de controle têm sido amplamente utilizados como método de monitoramento de processos on-line, no processo de detecção de ocorrências de falhas operacionais durante sua execução (Chan et al, 2002;He, 2013;Xi, 2009).…”
Section: Perspectivas De Pesquisas Futurasunclassified
“…Trabalhos recentes (Yeganeh et al, 2023;Lee, 2023) fizeram abordagens de controle de processos integradas ao machine learning para evitar erros na interpretação de gráficos, devido ao grande volume de dados gerados nos processos produtivos. Os gráficos de controle têm sido amplamente utilizados como método de monitoramento de processos on-line, no processo de detecção de ocorrências de falhas operacionais durante sua execução (Chan et al, 2002;He, 2013;Xi, 2009).…”
Section: Perspectivas De Pesquisas Futurasunclassified
“…On the other hand, the on-line surveillance of the process for a quick detection of assignable causes is referred to as Phase II (or on-line monitoring). The occurrence of assignable causes, which is also known as Out-Of-Control (OC) condition, leads to the elimination of the predefined Phase I stability conditions in a process so it is expected that a control chart triggers an OC signal as soon as possible in Phase II [ 45 ]. In Phase I, the IC parameters (model) are derived from the historical data and then the control charts’ limits are designed.…”
Section: Preliminariesmentioning
confidence: 99%
“…When the simulation studies are performed using IC profiles, then it is denoted as ARL 0 . It is expected to be reached as a target by the adjustment of UCL T 2 [51]. To better clarify, the following Algorithm 1 is suggested to obtain UCL T 2 .…”
Section: Phase II Analysismentioning
confidence: 99%