2021
DOI: 10.1186/s13662-021-03413-w
|View full text |Cite
|
Sign up to set email alerts
|

A Neumann problem for a diffusion equation with n-dimensional fractional Laplacian

Abstract: We study an initial-boundary value problem for a n-dimensional stochastic diffusion equation with fractional Laplacian on $\mathbb{R}_{+}^{n}$ R + n . In order to prove existence and uniqueness, we generalize the Fokas method to construct the Green function for the associated linear problem and then we apply a fixed point argument. Also, we present an example where the explicit solutions are given.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?