2010
DOI: 10.1109/tie.2009.2031196
|View full text |Cite
|
Sign up to set email alerts
|

A Neural Network Multiagent Architecture Applied to Industrial Networks for Dynamic Allocation of Control Strategies Using Standard Function Blocks

Abstract: This paper presents a multiagent architecture applied to factory automation. These agents detect faults in automated processes and allocate intelligent algorithms in field device function blocks (FBs) to solve these faults. We also present a dynamic FB parameter exchange strategy that allows agent fieldbus allocation. This architecture is a foundation for intelligent physical agents standard-based agent platform developed using Foundation Fieldbus technology. The aim is to enable problem detection activities, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
1

Year Published

2011
2011
2020
2020

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 15 publications
(3 citation statements)
references
References 22 publications
0
2
0
1
Order By: Relevance
“…To problems that in complex industrial process control, it is hard to create accurate system model, we can utilize learning, adaptation, self-organization and optimization characteristics of intelligent control, to design the control system based on rules from experiences, reasoning and intuition instead of on rigor analysis too much [17]. Algorithms in control theories based on multi-agent include reinforcement learning, evolution algorithm, neural network, fuzzy algorithm and simulated annealing algorithm [18][19][20][21][22]. Machado et al [20] use ANN to enable agents to learn about fault patterns and adapt the algorithm which can be used in fault situations in the presented multi-agent architecture applied to industry automation.…”
Section: Algorithmmentioning
confidence: 99%
See 1 more Smart Citation
“…To problems that in complex industrial process control, it is hard to create accurate system model, we can utilize learning, adaptation, self-organization and optimization characteristics of intelligent control, to design the control system based on rules from experiences, reasoning and intuition instead of on rigor analysis too much [17]. Algorithms in control theories based on multi-agent include reinforcement learning, evolution algorithm, neural network, fuzzy algorithm and simulated annealing algorithm [18][19][20][21][22]. Machado et al [20] use ANN to enable agents to learn about fault patterns and adapt the algorithm which can be used in fault situations in the presented multi-agent architecture applied to industry automation.…”
Section: Algorithmmentioning
confidence: 99%
“…Algorithms in control theories based on multi-agent include reinforcement learning, evolution algorithm, neural network, fuzzy algorithm and simulated annealing algorithm [18][19][20][21][22]. Machado et al [20] use ANN to enable agents to learn about fault patterns and adapt the algorithm which can be used in fault situations in the presented multi-agent architecture applied to industry automation. Anderson et al [23] utilize reinforcement learning to make controllers learn by themselves, and obtain optimal control actions finally.…”
Section: Algorithmmentioning
confidence: 99%
“…Ainda neste capítulo será explicado o queé o foundation fieldbus e como este foi utilizado no contexto de medição de vazão. O 42 treinamento das redes neurais foi desenvolvido fora do ambiente foundation fieldbus e, então, a topologia da rede neural mais os parâmetros de aprendizagem como os pesos sinápticos e limiares foram transportados para blocos funcionais em foundation fieldbus sendo que os principais blocos foram o aritmético e o caracterizador.O principal objetivo do trabalhoMachado et al (2010) foi criar uma arquitetura multiagente que permite incorporar nas redes industriais foundation fieldbus, aplicações inteligentes baseadas nos blocos funcionais de dispositivos de campo. Essa arquitetura viabiliza a alocação de recursos (algoritmos) em sensores e atuadores que permitem realizar algumas tarefas para auxiliar os supervisores a detectar e solucionar alguns problemas na rede como filtragem de ruído, predição A variação dos valores da temperatura e pressão também resultam em variações na densidade e viscosidade do fluido, isso acarretará uma variação no número de Reynolds que irá, por sua vez, provocar mudanças no valor do coeficiente de descarga.…”
unclassified