Acute leukemia is a cancer-related to a bone marrow abnormality. It is more common in children and young adults. This type of leukemia generates unusual cell growth in a short period, requiring a quick start of treatment. Acute Lymphoid Leukemia (ALL) and Acute Myeloid Leukemia (AML) are the main responsible for deaths caused by this cancer. The classification of these two leukemia types on blood slide images is a vital process of and automatic system that can assist doctors in the selection of appropriate treatment. This work presents a convolutional neural networks (CNNs) architecture capable of differentiating blood slides with ALL, AML and Healthy Blood Slides (HBS). The experiments were performed using 16 datasets with 2,415 images, and the accuracy of 97.18% and a precision of 97.23% were achieved. The proposed model results were compared with the results obtained by the state of the art methods, including also based on CNNs.Index Terms-leukemia diagnosis, convolutional neural network, computer aided diagnosis.
Background
With the emergence of the new coronavirus pandemic (COVID-19), distance learning, especially that mediated by information and digital communication technologies, has been adopted in all areas of knowledge and at all levels, including medical education. Imminently practical areas, such as pathology, have made traditional teaching based on conventional microscopy more flexible through the synergies of computational tools and image digitization, not only to improve teaching-learning but also to offer alternatives to repetitive and exhaustive histopathological analyzes. In this context, machine learning algorithms capable of recognizing histological patterns in kidney biopsy slides have been developed and validated with a view to building computational models capable of accurately identifying renal pathologies. In practice, the use of such algorithms can contribute to the universalization of teaching, allowing quality training even in regions where there is a lack of good nephropathologists. The purpose of this work is to describe and test the functionality of SmartPathk, a tool to support teaching of glomerulopathies using machine learning. The training for knowledge acquisition was performed automatically by machine learning methods using the J48 algorithm to create a computational model of an appropriate decision tree.
Results
An intelligent system, SmartPathk, was developed as a complementary remote tool in the teaching-learning process for pathology teachers and their students (undergraduate and graduate students), showing 89,47% accuracy using machine learning algorithms based on decision trees.
Conclusion
This artificial intelligence system can assist in teaching renal pathology to increase the training capacity of new medical professionals in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.