2006
DOI: 10.1007/11907350_49
|View full text |Cite
|
Sign up to set email alerts
|

A New 3D Parallel Thinning Scheme Based on Critical Kernels

Abstract: Abstract. Critical kernels constitute a general framework settled in the category of abstract complexes for the study of parallel thinning in any dimension. We take advantage of the properties of this framework, and we derive a general methodology for designing parallel algorithms for skeletons of objects in 3D grids. In fact, this methodology does not need to handle the structure of abstract complexes, we show that only 3 masks defined in the classical cubic grid are sufficient to implement it. We illustrate … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
30
0

Year Published

2006
2006
2013
2013

Publication Types

Select...
6
1

Relationship

6
1

Authors

Journals

citations
Cited by 21 publications
(30 citation statements)
references
References 20 publications
0
30
0
Order By: Relevance
“…The methodology presented in this paper has been extended to the important case of parallel thinning of 3D objects [6]. In future works, we will study the case of general skeletons (i.e., which are not necessarily principal subcomplexes), the computation of Euclidean skeletons, and the link between critical kernels, minimal non-simple sets and P-simple points for the 3D-and 4D-cases.…”
Section: Resultsmentioning
confidence: 99%
“…The methodology presented in this paper has been extended to the important case of parallel thinning of 3D objects [6]. In future works, we will study the case of general skeletons (i.e., which are not necessarily principal subcomplexes), the computation of Euclidean skeletons, and the link between critical kernels, minimal non-simple sets and P-simple points for the 3D-and 4D-cases.…”
Section: Resultsmentioning
confidence: 99%
“…For example, if the input is a corridor (the void of the corridor), then the skeleton should be a line following the main direction of the corridor. Generally, two strategies are possible to achieve this goal: find, during the skeletonization process, points whose neighbourhood configuration seems interesting and keep them in the result [6] [7] [5], or choose, before skeletonization, interesting points of the object which should remain untouched, based on a function on these points and a filtering parameter [2] [12].…”
Section: Aspect Preservation During Thinningmentioning
confidence: 99%
“…cubes, squares, edges, vertices) glued together according to certain rules. In this section, we recall briefly some basic definitions on complexes, see also [7,5,6] for more details. We consider here n-dimensional complexes, with 0 ≤ n ≤ 4.…”
Section: Cubical Complexesmentioning
confidence: 99%
“…26-simple, 80-simple) point in the framework of 2D (resp. 3D, 4D) digital topology (see [16,17,7,6]). …”
Section: New Characterization Of Simple Cellsmentioning
confidence: 99%
See 1 more Smart Citation