Current bias estimation algorithms for air traffic control (ATC) surveillance are focused on radar sensors, but the integration of new sensors (especially automatic dependent surveillance-broadcast and wide area multilateration) demands the extension of traditional procedures. This study describes a generic architecture for bias estimation applicable to multisensor multitarget surveillance systems. It consists on first performing bias estimations using measurements from each target, of a subset of sensors, assumed to be reliable, forming track bias estimations. All track bias estimations are combined to obtain, for each of those sensors, the corresponding sensor bias. Then, sensor bias terms are corrected, to subsequently calculate the target or sensor-target pair specific biases. Once these target-specific biases are corrected, the process is repeated recursively for other sets of less reliable sensors, assuming bias corrected measures from previous iterations are unbiased. This study describes the architecture and outlines the methodology for the estimation and the bias estimation design processes. Then the approach is validated through simulation, and compared with previous methods in the literature. Finally, the study describes the application of the methodology to the design of the bias estimation procedures for a modern ATC surveillance application, specifically for off-line assessment of ATC surveillance performance.