Heat, ventilation, and air conditioning (HVAC) systems are some of the most energy-intensive equipment in buildings and their faulty or inefficient operation can significantly increase energy waste. Non-Intrusive Load Monitoring (NILM), which is a software-based tool, has been a popular research area over the last few decades. NILM can play an important role in providing future energy efficiency feedback and developing fault detection and diagnosis (FDD) tools in smart buildings. Therefore, the review of NILM-based methods for FDD and the energy efficiency (EE) assessment of HVACs can be beneficial for users as well as buildings and facilities operators. To the best of the authors’ knowledge, this paper is the first review paper on the application of NILM techniques in these areas and highlights their effectiveness and limitations. This review shows that even though NILM could be successfully implemented for FDD and the EE evaluation of HVACs, and enhance the performance of these techniques, there are many research opportunities to improve or develop NILM-based FDD methods to deal with real-world challenges. These challenges and future research works are also discussed in-depth.
Errors due to sensor bias are often present in sensor data and can reduce the tracking accuracy and stability of multi-sensor systems. The other practical problem is that the target data reported by the sensors are usually not time-coincident or synchronous due to the different data. This paper deals with these problems and presents a new algorithm for estimation of both constant and dynamic biases in asynchronous multisensor systems. We use the measurements from asynchronous sensors into pseudomeasurements of the sensor biases with additive noises that are zero-mean, white and with easily calculated covariances. This algorithm is a Kalman filter based technique to estimate both the range and offset biases and is implemented recursively which is computationally efficient and provided real time estimation of asynchronous sensor bias. The Simulation results show the Cramer-Rao Lower Bound (CRLB) is achievable. This means the proposed estimation algorithm is statistically efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.