In the last decades, the use of zebrafish (Danio rerio) in biomedical research has increased. Anaesthesia is daily used in fish during experimental procedures to avoid discomfort, stress or pain. Also, fish welfare and the reliability of results can be compromised if an unsuitable anaesthetic protocol is used. Therefore, we aimed to refine anaesthetic protocols to be used in adult zebrafish by evaluating the efficacy of different anaesthetics, used alone or in combination. For that, zebrafish were randomly assigned to 8 different groups: 100 μg/mLMS-222 (MS); 0.2 μg/mL etomidate (E); 0.2 μg/mL etomidate + 100 μg/mL lidocaine (E+L); 1.25 μg/mL propofol (P); 1.25 μg/mL propofol + 100 μg/mL lidocaine (P+L); 100 μg/mL ketamine (K); 100 μg/mL ketamine + 1.25 μg/mL medetomidine (K+M); and 100 μg/mL ketamine + 1.25 μg/mL medetomidine/3.125 μg/mL atipamezole (K+M/A). The animals were placed in an anaesthetic water bath, then, the following parameters were registered: time for equilibrium loss and anaesthesia induction, loss of sensitivity to soft and painful stimuli, respiratory rate, recovery time, and activity after recovery. The combined forms of E+L, P+L and K+M were the fastest to induce a surgical anaesthetic stage. Nevertheless, E+L induced respiratory depression, while K+M was shown to have the longer recovery time compared to MS-222, even when atipamezole was added. In conclusion, the P+L combination was shown to provide good anaesthesia with analgesia, without causing a major respiratory depression, providing as well a quick recovery, similar to MS-222.