Methamphetamine (METH) causes irreversible damage to brain cells leading to neurological and psychiatric abnormalities. However, the mechanisms underlying life-threatening effects of acute METH intoxication remain unclear. Indeed, most of the hypotheses focused on intra-neuronal events, such as dopamine oxidation, oxidative stress and excitotoxicity. Yet, recent reports suggested that glia may contribute to METH-induced neuropathology. In the present study, we investigated the hippocampal dysfunction induced by an acute high dose of METH (30 mg/kg; intraperitoneal injection), focusing on the inflammatory process and changes in several neuronal structural proteins. For that, 3-month-old male wild-type C57BL/6J mice were killed at different time-points post-METH. We observed that METH caused an inflammatory response characterized by astrocytic and microglia reactivity, and tumor necrosis factor (TNF) system alterations. Indeed, glial fibrillary acidic protein (GFAP) and CD11b immunoreactivity were upregulated, likewise TNF-alpha and TNF receptor 1 protein levels. Furthermore, the effect of METH on hippocampal neurons was also investigated, and we observed a downregulation in beta III tubulin expression. To clarify the possible neuronal dysfunction induced by METH, several neuronal proteins were analysed. Syntaxin-1, calbindin D28k and tau protein levels were downregulated, whereas synaptophysin was upregulated. We also evaluated whether an anti-inflammatory drug could prevent or diminish METH-induced neuroinflammation, and we concluded that indomethacin (10 mg/kg; i.p.) prevented METH-induced glia activation and both TNF system and beta III tubulin alterations. In conclusion, we demonstrated that METH triggers an inflammatory process and leads to neuronal dysfunction in the hippocampus, which can be prevented by an anti-inflammatory treatment.
The mechanisms by which methamphetamine (METH) causes neurotoxicity are not well understood. Recent studies have suggested that METH-induced neuropathology may result from a multicellular response in which glial cells play a prominent role, and so it is plausible to suggest that cytokines may participate in the toxic effects of METH. Therefore, in the present work we evaluated the effect of an acute administration of METH (30 mg/kg in a single intraperitoneal injection) on the interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha mRNA expression levels in the hippocampus, frontal cortex, and striatum of mice. We observed that METH did not induce changes in the IL-1beta mRNA expression levels in both hippocampus and striatum, with immeasurable levels in the frontal cortex. Regarding IL-6, METH induced an increase in the expression levels of this cytokine in the hippocampus and striatum, 1 h and 30 min post injection, respectively. In the frontal cortex, the increase in IL-6 mRNA levels was more significant and remained high even after 2 h. Moreover, the expression levels of TNF-alpha were increased in both hippocampus and frontal cortex 30 min post METH administration, with immeasurable levels in the striatum. We conclude that the pro-inflammatory cytokines IL-6 and TNF-alpha rapidly increase after METH administration, providing a new insight for understanding the effect of this drug of abuse in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.