2018
DOI: 10.1016/j.matchar.2018.08.009
|View full text |Cite
|
Sign up to set email alerts
|

A new analysis approach based on Haralick texture features for the characterization of microstructure on the example of low-alloy steels

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
15
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
1

Relationship

2
5

Authors

Journals

citations
Cited by 37 publications
(17 citation statements)
references
References 24 publications
0
15
0
2
Order By: Relevance
“…Gola et al [5] presented a workflow for two-phase steels, in which after first segmenting the carbon-rich phase (pearlite, bainite or martensite) against the ferritic matrix by thresholding, morphological and textural 1 3 parameters are used to classify pearlite, bainite and martensite. The applicability of textural parameters to distinguish different microstructures was also shown by Webel et al [6] who distinguished pearlite, lower bainite and martensite with Haralick textural features or by Arivazhagan et al [7] where local ternary patterns were used to differentiate low-, medium-and high-carbon steels.…”
Section: Introductionmentioning
confidence: 76%
“…Gola et al [5] presented a workflow for two-phase steels, in which after first segmenting the carbon-rich phase (pearlite, bainite or martensite) against the ferritic matrix by thresholding, morphological and textural 1 3 parameters are used to classify pearlite, bainite and martensite. The applicability of textural parameters to distinguish different microstructures was also shown by Webel et al [6] who distinguished pearlite, lower bainite and martensite with Haralick textural features or by Arivazhagan et al [7] where local ternary patterns were used to differentiate low-, medium-and high-carbon steels.…”
Section: Introductionmentioning
confidence: 76%
“…While the original approach of Haralick's analysis measures the pairing of gray values only for directions at angles of 0 • , 45 • , 90 • , and 135 • , the approach presented by Webel et al [23] where the image is rotated in 1 • steps from 0 • to 180 • and the GLCM is measured for each rotation, is used in this work. From these rotations the mean value as well as the amplitude, defined as maximum minus minimum, of the textural parameters are calculated.…”
Section: Calculation Of Haralick Parametersmentioning
confidence: 99%
“…Image texture based analysis methods include Haralick textural parameters [21] and local binary patterns [22], amongst others. Webel et al [23] developed a new approach based on Haralick textural parameters. Instead of calculating the parameters only at angles of 0 • , 45 • , 90 • , and 135 • , they are calculated from the 1 • stepwise rotation of images, making the values independent of the original texture orientation.…”
Section: Introductionmentioning
confidence: 99%
“…Aplicado a três diferentes conjuntos de imagens, a implementação da Matriz de Coocorrência GLCM resultou em acurácia igual a 89% para classificação de imagens de minerais, 82% de imagens de fotografias aéreas, e de 83% para identificação de imagens de satélite (HARALICK;SHANMUGAM;DINSTEIN, 1973). Webel et al (2018) aplicaram GLCM para classificação de diferentes microestruturas em ligas de aço por meio da análise de imagens de microscópio eletrônico de varredura (MEV). As imagens em estudo foram rotacionadas de 0 • a 180 • , com incremento de 1 • .…”
Section: Matriz De Coocorrência Dos Níveis De Cinza (Glcm)unclassified
“…A análise de textura é fundamental em diversas aplicações de visão computacional e de reconhecimento de padrões (LIU et al, 2019), sendo aplicada a reconhecimento de objetos (GU et al, 2016;, registro de imagens (PAUL;PATI, 2017;DELLINGER et al, 2015;FU, 2015), classificação de texturas (VI-EIRA;ZHANG, 2010;ZHANG et al, 2007), predição de movimento em vídeo (BOONTHEP; CHAMNONGTHAI; PHENSADSA-ENG, 2018), detecção de objetos em imagens de vídeo (BERE, 2018), classificação de elementos na constituição de ligas de metais (WEBEL et al, 2018), reconhecimento de íris (SOUZA; GONZAGA, 2019), segmentação e classificação de imagens médicas (OWJI-MEHR; DANYALI; HELFROUSH, 2014), reconhecimento de expressões faciais (SINGH; MAURYA; MITTAL, 2012), sensoriamento remoto (CHEN et al, 2016), classificação de recifes de corais(MARY; DEJEY, 2018), dentre outras.…”
Section: Introductionunclassified