This study reports, electrorheological (ER) responses of pumice and poly(methyl methacrylate)/ pumice, PMMA/pumice, conducting composite dispersions in silicone oil (SO). Primarily three different compounds (K1, K2, K3, 73%, 48%, 22% contain pumice particles) PMMA/pumice composites were prepared and used as ER active materials. Anti-sedimentation stabilities of pumice and composite systems in silicone oil (SO) medium were determined. The application of a suspension of composite particles as an electrorheological ER fluid (20% particle concentration) was assessed using a rotational electro-rheometer, and the effects of the electric field strength, shear rate, frequency and temperature were examined. ER activity of all the composite suspensions was observed to increase with increasing concentration, electric field strength and decreasing shear rate. The PMMA/pumice composites suspensions show a typical shear thinning non-Newtonian viscoelastic behavior, in which viscosity of the suspension decremented sharply with incrementing shear rate. The ER measurement results showed that the performance of the composite suspensions was enhanced by increasing the electric field strength.