In real time applications, image denoising is a predominant task. This task makes adequate preparation for images looks prominent. But there are several denoising algorithms and every algorithm has its own distinctive attribute based upon different natural images. In this paper, we proposed a perspective that is modified parameter in S-Gradient Histogram Preservation denoising method. S-Gradient Histogram Preservation is a method to compute the structure gradient histogram from the noisy observation by taking different noise standard deviations of different images. The performance of this method is enumerated in terms of peak signal to noise ratio and structural similarity index of a particular image. In this paper, mainly focus on peak signal to noise ratio, structural similarity index, noise estimation and a measure of structure gradient histogram of a given image.