In this paper an interactive parametric design-through-analysis platform is proposed to help design engineers and analysts make more effective use of Isogeometric Analysis (IGA) to improve their product design and performance. We develop several Rhinoceros (Rhino) plug-ins to take input design parameters through a user-friendly interface, generate appropriate surface and/or volumetric models, perform mechanical analysis, and visualize the solution fields, all within the same Computer-Aided Design (CAD) program. As part of this effort we propose and implement graphical generative algorithms for IGA model creation and visualization based on Grasshopper, a visual programming interface to Rhino. The developed platform is demonstrated on two structural mechanics examples-an actual wind turbine blade and a model of an integrally bladed rotor (IBR). In the latter example we demonstrate how the Rhino functionality may be utilized to create conforming volumetric models for IGA.
KeywordsIsogeometric analysis, NURBS and T-splines, Parametric design, Rhino and Grasshopper, Visual programming, Graphical generative algorithms
RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. In this paper an interactive parametric design-through-analysis platform is proposed to help design engineers and analysts make more effective use of Isogeometric Analysis (IGA) to improve their product design and performance. We develop several Rhinoceros (Rhino) plug-ins to take input design parameters through a user-friendly interface, generate appropriate surface and/or volumetric models, perform mechanical analysis, and visualize the solution fields, all within the same Computer-Aided Design (CAD) program. As part of this effort we propose and implement graphical generative algorithms for IGA model creation and visualization based on Grasshopper, a visual programming interface to Rhino. The developed platform is demonstrated on two structural mechanics examples-an actual wind turbine blade and a model of an integrally bladed rotor (IBR). In the latter example we demonstrate how the Rhino functionality may be utilized to create conforming volumetric models for IGA.
Authors
Ming-Chen