We analyze the lumpability of linear systems on Banach spaces, namely, the possibility of projecting the dynamics by a linear reduction operator onto a smaller state space in which a self-contained dynamical description exists. We obtain conditions for lumpability of dynamics defined by unbounded operators using the theory of strongly continuous semigroups. We also derive results from the dual space point of view using sun dual theory. Furthermore, we connect the theory of lumping to several results from operator factorization. We indicate several applications to particular systems, including delay differential equations.