Ruthenium catalysts modified by selenium are of interest as a methanol insensitive oxygen reduction catalyst in a polymer electrolyte membrane fuel cell for mobile application. To elucidate the structural and chemical features of unsupported and carbon supported ruthenium nanoparticles prepared by thermolysis of Ru 3 (CO) 12 in an organic solvent with and without the presence of dissolved selenium, different bulk and surface sensitive methods such as transmission electron microscopy, X-ray diffractometry, thermogravimetry coupled with mass spectrometry, X-ray photoelectron spectroscopy, and extended X-ray absorption fine structure analysis were performed. It was found that the as-grown catalytic particles prepared without Se and handled under ambient conditions are distinguished by a ruthenium core of 4 nm size, the surface of which is covered by an amorphous ruthenium oxide/hydroxide and metal organic residues from the process of synthesis. In the presence of Se, Ru-Se and Se-O bondings have additionally been found at the surface. After heat treatment at 900 °C under vacuum, organic residues and ruthenium oxides could be removed. The particles have grown to a size of about 10 nm, the surfaces of which are covered by Ru-Se and Ru-SeO 3 units. The as-grown and heat-treated catalysts were characterized electrochemically by cyclovoltammetry, rotating disk electrode with and without methanol in the electrolyte, and rotating ring disk electrode measurements to quantify H 2 O 2 production. As expected from structural analysis, best results have been obtained with heat-treated, Se-modified ruthenium catalysts. It is proposed that in the heat-treated samples an interaction between Se 2-, [Se 2 ] 2-, and SeO 3 2decorating the surface of the ruthenium particles is responsible for the improved oxygen reduction process.