The occasion of the Xenarthra Symposium during the ICVM 9 meeting allowed us to reflect on the considerable advances in the knowledge of sloths made by the "Xcommunity" over the past two decades, particularly in such aspects as locomotion, mastication, diet, dental terminology, intraspecific variation, sexual dimorphism, and phylogenetic relationships. These advancements have largely been made possible by the application of cladistic methodology (including DNA analyses) and the discovery of peculiar forms such as Diabolotherium, Thalassocnus, and Pseudoglyptodon in traditionally neglected areas such as the Chilean Andes and the Peruvian Pacific desert coast. Modern tree sloths exhibit an upside-down posture and suspensory locomotion, but the habits of fossil sloths are considerably more diverse and include locomotory modes such as inferred bipedality, quadrupedality, arboreality or semiarboreality, climbing, and an aquatic or semi-aquatic lifestyle in saltwater. Modern tree sloths are generalist browsers, but fossil sloths had browsing, grazing, or mixed feeding dietary habits. Discovery of two important sloth faunas in Brazil (Jacobina) and southern North America (Daytona Beach and Rancho La Brea) have permitted evaluation of the ontogenetic variation in Eremotherium laurillardi and the existence of possible sexual dimorphism in this sloth and in Paramylodon harlani. A new dental terminology applicable to a majority of clades has been developed, facilitating comparisons among taxa. An analysis wherein functional traits were plotted onto a phylogeny of sloths was used to determine patterns of evolutionary change across the clade. These analyses suggest that megatherioid sloths were primitively semiarboreal or possessed climbing adaptations, a feature retained in some members of the family Megalonychidae. Pedolateral stance in the hindfoot is shown to be convergently acquired in Mylodontidae and Megatheria (Nothrotheriidae + Megatheriidae), this feature serving as a synapomorphy of the latter clade. Digging adaptations can only be securely ascribed to scelidotheriine and mylodontine sloths, and the latter are also the only group of grazing sloths, the remainder being general browsers.