Purpose: Although tumor mutation burden (TMB) has been well known to predict the response to immune checkpoint inhibitors (ICI), lack of randomized clinical trial data has restricted its clinical application. This study aimed to explore the significance and feasibility of biomarker combination based on TMB and copy-number alteration (CNA) for the prognosis of each tumor and prediction for ICI therapy in metastatic pan-cancer milieu.Experimental Design: Non-ICI-treated MSK pan-cancer cohort was used for prognosis analysis. Three independent immunotherapy cohorts, including non-small cell lung cancer (n ¼ 240), skin cutaneous melanoma (n ¼ 174), and mixed cancer (Dana-Farber, n ¼ 98) patients from previous studies, were analyzed for efficacy of ICI therapy.Results: TMB and CNA showed optimized combination for the prognosis of most metastatic cancer types, and patients with TMB low CNA low showed better survival. In the predictive analysis, both TMB and CNA were independent predictive factors for ICI therapy. Remarkably, when TMB and CNA were jointly analyzed, those with TMB high CNA low showed favorable responses to ICI therapy. Meanwhile, TMB high CNA low as a new biomarker showed better prediction for ICI efficacy compared with either TMB-high or CNA-low alone. Furthermore, analysis of the non-ICI-treated MSK pan-cancer cohort supported that the joint stratification of TMB and CNA can be used to categorize tumors into distinct sensitivity to ICI therapy across pan-tumors.Conclusions: The combination of TMB and CNA can jointly stratify multiple metastatic tumors into groups with different prognosis and heterogeneous clinical responses to ICI treatment. Patients with TMB high CNA low cancer can be an optimal subgroup for ICI therapy.