2020
DOI: 10.25130/j.v25i1.944
|View full text |Cite
|
Sign up to set email alerts
|

A New Hybrid Grasshopper Optimization - Backpropagation for Feedforward Neural Network Training

Abstract: The Grasshopper optimization algorithm showed a rapid converge in the initial phases of the global search, however while being around the global optimum, the searching process became so slow. On the contrary, the gradient descending method around achieved faster convergent speed global optimum, and the convergent accuracy was showed to be higher at the same time. As a result, the proposed hybrid algorithm combined Grasshopper optimization algorithm (GOA) along with the back-propagation (BP) algorithm, also ref… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 41 publications
(55 reference statements)
0
1
0
2
Order By: Relevance
“…Metode backpropagation merupakan metode berbasis gradien yang banyak digunakan untuk perlatihan jaringan saraf feedforward (umpan maju) [17][18][19]. Perkembangan metode backpropagation dengan beberapa fungsi, diantaranya fungsi transfer dan perlatihan yang masing-masing fungsi juga dengan banyak teknik dan metode yang dapat digunakan untuk menyelesaikan penyelesaian masalah dengan tingkat kekompleksan yang tinggi.…”
Section: Pendahuluanunclassified
“…Metode backpropagation merupakan metode berbasis gradien yang banyak digunakan untuk perlatihan jaringan saraf feedforward (umpan maju) [17][18][19]. Perkembangan metode backpropagation dengan beberapa fungsi, diantaranya fungsi transfer dan perlatihan yang masing-masing fungsi juga dengan banyak teknik dan metode yang dapat digunakan untuk menyelesaikan penyelesaian masalah dengan tingkat kekompleksan yang tinggi.…”
Section: Pendahuluanunclassified
“…Back-propagation is widely used for training feedforward neural networks which are gradient-based algorithms [6][7][8]. Based on its development, Back-propagation has different functions, including the activation function (transfer) and the training function, each of which has many methods and techniques that can be used to solve complex computational problems.…”
Section: Introductionmentioning
confidence: 99%
“…[5] Teknik Machine Learning bertujuan agar komputer dapat belajar secara otomatis tanpa adanya campur tangan manusia, [6] serta menyesuaikan tindakan yang tepat. [7] Fokus penelitian Machine Learning tentang bagaimana meningkatkan kinerja sistem pembelajaran otomatis melalui pelatihan-pelatihan atau pengalaman. [8] permasalahan Machine Learning digunakan sebagai pilihan dalam mengoptimalkan cara kerja komputer sesuai dengan data lalu.…”
unclassified