As a useful tool to detect protrusion buried in signals, kurtosis has a wide application in engineering, for example, in bearing fault diagnosis. Spectral kurtosis (SK) can further indicate the presence of a series of transients and their locations in the frequency domain. The factors influencing kurtosis values are first analyzed, leading to the conclusion that amplitude, not the frequency of signals, and noise make major contribution to kurtosis values. It is helpful to detect impulsive components if the components with big amplitude are removed from composite signals. Based on this cognition, an adaptive SK algorithm is proposed in this paper. The core steps of the proposed SK algorithm are to find maxima, add window around maxima, merge windows in the frequency domain, and then filter signals according to the merged window in the time domain. The parameters of the proposed SK algorithm are varying adaptively with signals. Some experimental results are presented to demonstrate the effectiveness of the proposed algorithm.