The urgent need to address the global energy and environmental crisis necessitates the development of efficient solar‐power harvesting systems. Among the promising candidates, hierarchical inorganic nanostructures stand out due to their exceptional attributes, including a high specific surface area, abundant active sites, and tunable optoelectronic properties. In this comprehensive review, we delve into the fundamental principles underlying various solar energy harvesting technologies, including dye‐sensitized solar cells (DSSCs), photocatalytic, photoelectrocatalytic (water splitting), and photothermal (water purification) systems, providing a foundational understanding of their operation. The review then shifts its focus to recent advancements in the synthesis, design, and development of hierarchical nanostructures composed of diverse inorganic material combinations, tailored for each of these solar energy harvesting systems. We meticulously elaborate on the distinct synthesis methods and conditions employed to fine‐tune the morphological features of these hierarchical nanostructures. Furthermore, this review offers profound insights into critical aspects such as electron transfer mechanisms, band gap engineering, the creation of hetero‐hybrid structures to optimize interface chemistry through diverse synthesis approaches, and precise adjustments of structural features. Beyond elucidating the scientific fundamentals, this review explores the large‐scale applications of the aforementioned solar harvesting systems.