The need for cloud storage grows day after day due to its reliable and scalable nature. The storage and maintenance of user data at a remote location are severe issues due to the difficulty of ensuring data privacy and confidentiality. Some security issues within current cloud systems are managed by a cloud third party (CTP), who may turn into an untrustworthy insider part. This paper presents an automated Encryption/Decryption System for Cloud Data Storage (AEDS) based on hybrid cryptography algorithms to improve data security and ensure confidentiality without interference from CTP. Three encryption approaches are implemented to achieve high performance and efficiency: Automated Sequential Cryptography (ASC), Automated Random Cryptography (ARC), and Improved Automated Random Cryptography (IARC) for data blocks. In the IARC approach, we have presented a novel encryption strategy by converting the static S-box in the AES algorithm to a dynamic S-box. Furthermore, the algorithms RSA and Twofish are used to encrypt the generated keys to enhance privacy issues. We have evaluated our approaches with other existing symmetrical key algorithms such as DES, 3DES, and RC2. Although the two proposed ARC and ASC approaches are more complicated, they take less time than DES, DES3, and RC2 in processing the data and obtaining better performance in data throughput and confidentiality. ARC outperformed all of the other algorithms in the comparison. The ARC’s encrypting process has saved time compared with other algorithms, where its encryption time has been recorded as 22.58 s for a 500 MB file size, while the DES, 3DES, and RC2 have completed the encryption process in 44.43, 135.65, and 66.91 s, respectively, for the same file size. Nevertheless, when the file sizes increased to 2.2 GB, the ASC proved its efficiency in completing the encryption process in less time.