2013 21st Signal Processing and Communications Applications Conference (SIU) 2013
DOI: 10.1109/siu.2013.6531324
|View full text |Cite
|
Sign up to set email alerts
|

A new method for selection optimum k value in k-NN classification algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2014
2014
2018
2018

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 9 publications
0
1
0
1
Order By: Relevance
“…The fundamental objective of K-NN algorithm is to find out the optimal classified features that are most similar to the test features and confirm the categories of the test features according to the number of feature categories [3,4,5]. The similarity between two features is measured by the Euclidean distance between them, where decreasing distance indicates increasing similarity.…”
Section: A K-nn Methodsmentioning
confidence: 99%
“…The fundamental objective of K-NN algorithm is to find out the optimal classified features that are most similar to the test features and confirm the categories of the test features according to the number of feature categories [3,4,5]. The similarity between two features is measured by the Euclidean distance between them, where decreasing distance indicates increasing similarity.…”
Section: A K-nn Methodsmentioning
confidence: 99%
“…Önemli olan, her bir sınıfın özelliklerinin önceden net bir şekilde belirlenmiş olmasıdır. Yöntemin performansını k-en yakın komşu sayısı, eşik değer, benzerlik ölçümü ve öğrenme kümesindeki normal davranışların yeterli sayıda olması parametreleri değiştirmektedir [18]. Bu çalışmada k değeri 5 olarak belirlenmiştir.…”
Section: K-en Yakın Komşuluk Uzayının Oluşturulmasıunclassified