This paper deals with the problems of bifurcation of limit cycles and pseudo-isochronous center conditions at degenerate singular point in a class of septic polynomial differential system. We solve the problems by an indirect method, i.e., we transform the degenerate singular point into an elementary singular point. Then we construct a septic system which allows the appearance of eight limit cycles in the neighborhood of degenerate singular point. Finally, we investigate the pseudo-isochronous center conditions at degenerate singular point for the system. As far as we know, this is the first time that an example of septic system with eight limit cycles bifurcating from degenerate singular point is given, and it is also the first time the pseudo-isochronous center conditions at degenerate singular point in a septic system are discussed.
Mathematics Subject Classification (2000). Primary 34C05; Secondary 34C07.