This work is aimed at comparing several methods for the measurement of physical properties for molten Sn and Sn-Ag alloys, namely, surface tension, density, and viscosity. The method used for viscosity in this work is the modified capillary method. For surface tension and density, the data used for comparison were previously measured using the maximum bubble pressure method and the dilatometer technique, respectively, for four Sn-Ag alloys having (3.8, 32, 55, and 68) at% Ag. The results are compared with those obtained using a new method based on a fluid draining from a crucible under the influence of gravity, designated the Roach-Henein (RH) method. This new method enables the determination of these three physical properties in one set of measurements. Liquid Sn was used as well as two liquid Sn-Ag alloys having (3.8 and 34.6) at% Ag with the RH method. It was determined that the RH method may be used to simultaneously obtain surface tension, viscosity, and density and that the errors associated with these measurements were similar to those obtained using traditional and separate techniques. Comparisons of the measured viscosity and surface tension to those predicted using thermodynamic models will also be presented. Finally a comparison of mixing model predictions with the experimentally measured alloy surface tension and viscosity is also presented. Volume of liquid drawn into the reservoir at the start of measurement, m 3
Keywords