Much has been written about the deepwater Lower Tertiary Wilcox trend in the Gulf of Mexico, which spans hundreds of miles from Alaminos Canyon to Keathley Canyon to Walker Ridge (as well as adjacent areas). The estimated ultimate recoverable oil from these reservoirs is significant: 3 to 15 billion barrels. However, significant technical and reservoir challenges remain because of the water depth (typically greater than 5,000 ft), reservoir depth (typically greater than 20,000 to 30,000 ft below the mud line (BML)), and high pressures (greater than 20,000 psi bottomhole pressure (BHP)). Combining these issues with the thick, low permeability reservoir intervals (more than 1,000 ft thick in the tens of mD) requires new tools as well as new planning and optimization methods.
These new planning tools require system-wide (holistic) integration across multiple domains and completion software applications to produce a truly optimized completion. This type of integration is provided by an automated software workflow. Previous papers have provided details about the benefits derived from the automation of operations, engineering, and production workflows in general. Lower Tertiary Wilcox reservoirs were deemed good candidates by a major service company to implement the automated workflow concept, given the reservoirs’ low productivity index (PI), high-cost wells, high pressure/high temperature (HPHT) technical challenges, and production uncertainty.
This specific workflow seeks to optimize hydraulic fracture design within Lower Tertiary Wilcox reservoirs by stipulating the maximum net present value (NPV) that satisfies all well, completion, and reservoir constraints. Hydraulic fracture design is an example of what is largely a manual process that requires interaction with several software applications to obtain fracture geometry, production constraints, production sensitivity criteria, and NPV scenarios. When the goal is an optimized fracture design, the process is especially arduous because it requires iterative interactions with reservoir simulators, nodal programs, economics models, well tubular design systems, and stimulation design tools to arrive at a suitable design. Enabling coupled simulations technology, this fracture workflow provides a unique holistic combination of tools, which are linked to reflect the actual economic values.