Abstract. This paper provides new test methods and analytical procedures for characterizing the electrical performance of photovoltaic modules and arrays. The methods use outdoor measurements to provide performance parameters both at standard reporting conditions and for all operating conditions encountered by typical photovoltaic systems. Improvements over previously used test methods are identified, and examples of the successful application of the methodology are provided for crystalline-and amorphous-silicon modules and arrays. This work provides an improved understanding of module and array performance characteristics, and perhaps most importantly, a straight-forward yet rigorous model for predicting array performance at all operating conditions. For the first time, the influences of solar irradiance, operating temperature, solar spectrum, solar angle-of-incidence, and temperature coefficients are all addressed in a practical way that will benefit both designers and users of photovoltaics.