2019
DOI: 10.3390/en12101898
|View full text |Cite
|
Sign up to set email alerts
|

A New Physics-Based Modeling Approach for a 0D Turbulence Model to Reflect the Intake Port and Chamber Geometries and the Corresponding Flow Structures in High-Tumble Spark-Ignition Engines

Abstract: Turbulence is one of the most important aspects in spark-ignition engines as it can significantly affect burn rates, heat transfer rates, and combustion stability, and thus the performance. Turbulence originates from a large-scale mean motion that occurs during the induction process, which mainly consists of tumble motion in modern spark-ignition engines with a pentroof cylinder head. Despite its significance, most 0D turbulence models rely on calibration factors when calculating the evolution of tumble motion… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0
3

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(13 citation statements)
references
References 22 publications
0
10
0
3
Order By: Relevance
“…They differ mainly on the way to describe the energy flow into the cylinder, on the production of turbulence from the non-tumble mean flow and on the creation of turbulence by the tumble movement decay. For this model, the choice was made to adopt the general structure of the equations of the first Fogla model [76] with an in-cylinder mass flow multiplied by the coefficient 𝐶 𝑇 and to integrate the tumble decay function resulting from an analytical calculation of Kim's model [77]. This choice avoids additional heavy CFD calculations.…”
Section: Prediction Of the In-cylinder Turbulencementioning
confidence: 99%
“…They differ mainly on the way to describe the energy flow into the cylinder, on the production of turbulence from the non-tumble mean flow and on the creation of turbulence by the tumble movement decay. For this model, the choice was made to adopt the general structure of the equations of the first Fogla model [76] with an in-cylinder mass flow multiplied by the coefficient 𝐶 𝑇 and to integrate the tumble decay function resulting from an analytical calculation of Kim's model [77]. This choice avoids additional heavy CFD calculations.…”
Section: Prediction Of the In-cylinder Turbulencementioning
confidence: 99%
“…Ils différent principalement sur la manière de décrire l'entrée d'énergie dans le système, sur la production de turbulence issue de l'écoulement moyen non tumble et sur la création de turbulence par destruction du mouvement de tumble. Pour ce modèle, le choix a été fait de conserver la structure générale des équations du modèle de Fogla avec un débit entrant multiplié par le coefficient [27] tout en intégrant la fonction tumble decay issue d'un calcul analytique du modèle de Kim [28]. Ce choix permet de s'astreindre de lourds calculs CFD supplémentaires.…”
Section: Table 1 Evolution Des Dimensions Du Moteur En Fonction Du Dunclassified
“…Le coefficient , constante de calage, permet de décomposer cette énergie en deux, avec une partie injectée dans l'équation de MKE et l'autre dans celle de TKE. Le terme de création de moment cinétique de l'écoulement tumble ̇ se calcule avec rayon de tumble issu du calcul du moment d'inertie à la manière de Kim [28]. Les deux termes d'énergie entrante s'écrivent :…”
Section: Table 1 Evolution Des Dimensions Du Moteur En Fonction Du Dunclassified
See 1 more Smart Citation
“…An aeroengine, with the requirements of long engine life, great operational flexibility, and control performance, is a complicated aerothermodynamic system [1]. The engine model is formulated in a set of mathematical expressions for controller design and health monitoring [2,3]. In the modeling process, the goal is to obtain an accurate and real-time model with a simple structure.…”
Section: Introductionmentioning
confidence: 99%