The 1980 paper by T. M. Heckman is the standard reference for a type of galactic nucleus called a LINER (low-ionization nuclear emission-line region), which is defined by its spectral line emission. The spectra of these objects typically include line emission from weakly ionized or neutral atoms, such as O, O+, N+, and S+. Unlike the more luminous but much rarer Seyfert 2 nuclei, the spectral line emission from strongly ionized atoms, such as O++, Ne++, and He+, is relatively weak in LINERs. Prior to this paper, a handful of these objects had been studied, and the view was that they constituted a rare class of active galactic nucleus (AGN) in which shock-heating of the gas was likely to play an important role in exciting the line emission. Heckman's paper, which was the third and last in a series published in A&A and A&AS in 1980 on the properties of the nuclear regions of nearby galaxies, demonstrated clearly that LINERs are ubiquitous in the nuclei of early type galaxies. The paper was also the first to use the acronym LINER, which now has its own Wikipedia entry! The survey on which the paper is based consists of a sample of 90 galaxies listed in the Second Reference Catalog of Galaxies (de Vaucouleurs et al. 1976) as brighter than 12th magnitude and north of declination +40 deg. The radio data was obtained using the first set of antennae that were available on the VLA. In the late 1970s, almost all radio interferometry was done in Europe or Australia and most American astronomers had to be content with single-dish observations using the Arecibo or Green Bank telescopes.Although Heckman's survey only contained a small number of galaxies, the important point is that it was an unbiased study of nuclear activity in a small, but representative sample of nearby galaxies. The sample was selected using only the apparent magnitude of the galaxy as a criterion, hence insuring that it did not favor any particular form of nuclear activity and that it included a wide range of galaxies of different intrinsic luminosities and types. This allowed Heckman to characterize both the LINER phenomenon itself and the properties of LINER host galaxies in considerable detail.Some of Heckman's main conclusions about the LINER nuclear activity in galaxies are: 1) that the total luminosities of the line-emitting regions are low (10 38 −10 40 erg s −1 ), so more similar to giant HII regions than the nuclei of Seyferts or quasars; 2) that the widths of the emission lines are similar to the lines originating in the narrow-line gas in Seyferts; 3) that there is no evidence of a featureless blue continuum that indicates the presence of an accretion disk in these objects; and 4) that LINERs are frequently associated with compact nuclear radio sources.His study of the correlation between LINER activity and host galaxy properties showed that: 1) LINERs occur in a third of all galaxies in the local Universe; 2) that the LINER fraction peaks in galaxies with early-type (E,S0,Sa) morphologies; 3) that there is no correlation between LINER activit...