Chromera velia is a recently discovered, photosynthetic, free-living alveolate that is the closest free-living relative to nonphotosynthetic apicomplexan parasites. Most plastids, regardless of their origin, have membranes composed chiefly of two galactolipids, mono-and digalactosyldiacylglycerol (MGDG and DGDG, respectively). Because of the hypothesized shared red algal origin between the plastids of C. velia and dinoflagellates, our primary objectives were to examine how growth temperature affects MGDG and DGDG composition via positive-ion electrospray/mass spectrometry (ESI/MS) and positive ion/electrospray/ mass spectrometry/mass spectrometry (ESI/MS/MS), and to examine galactolipid biosynthetic genes to determine if shared ancestry translates into shared MGDG and DGDG composition. When growing at 20°C, C. velia produces eicosapentaenoic acidrich 20:5(n-3)/20:5(n-3) (sn-1/sn-2) MGDG and 20:5(n-3)/20:5(n-3) DGDG as its primary galactolipids, with relative percentage compositions of approximately 35 and 60%, respectively. At 30°C these are lessened by approximately 5 and 8%, respectively, by the corresponding production of 20:5/20:4 forms of these lipids. The presence of 20:5 at the sn-1 position is similar to what has been observed previously in a cluster of peridinin-containing dinoflagellates, but the presence of 20:5(n-3) at the sn-2 position is extremely rare. Thus, the forms of MGDG and DGDG in C. velia displayed similarities and differences to what has been observed in peridinin-containing dinoflagellates, such as Lingulodinium polyedrum, which produces 20:5/18:5 and 20:5/18:4 as the major forms of MGDG and DGDG. We develop conceptual models from the galactolipids observed and galactolipid-relevant gene annotations to explain the presence of polyunsaturated fatty acid-containing MGDG and DGDG in both L. polyedrum and C. velia.