The Burr XII distribution offers a flexible alternative to the distributions that play important role for modelling data in reliability, risk and process capability. However, estimating the shape parameters of the Burr XII distribution is a challenging problem. The classical estimation methods such as maximum likelihood and least squares are often used to estimate the parameters of the Burr XII distribution, but these methods are very sensitive to the outliers in the data. Thus, a robust estimation method alternative to the classical methods is needed to find robust estimators that are less sensitive to the outliers in the data. The purpose of this paper is to use the optimal B-robust estimation method [Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA. Robust statistics: the approach based on influence functions. New York: Wiley; 1986] to obtain robust estimators for the shape parameters of the Burr XII distribution. The simulation results show that the optimal B-robust estimators generally outperform the classical estimators in terms of the bias and root mean square errors when there are outliers in data.