“…If f ( η 1 , η 2 , …, η m , τ 1 , τ 2 , …, τ n ) is strictly increasing with respect to τ 1 , τ 2 , …, τ k and strictly decreasing with respect to τ k + 1 , τ k + 2 , …, τ n , then the uncertain random variable has a chance distribution where F ( x ; y 1 , y 2 , …, y m ) is the uncertainty distribution of the uncertain variable f ( y 1 , y 2 , …, y m , τ 1 , τ 2 , …, τ n ) for any given real numbers y 1 , y 2 , …, y m . According to the definition of the uncertainty distribution in the article, when ϒ 1 , ϒ 2 , …, ϒ n are continuous uncertainty distributions, F ( x ; y 1 , y 2 , …, y m ) can be determined by the following formula: …”