Abstract:Since the air-gap field of flux-switching permanent magnet (FSPM) machines is difficult to regulate as it is produced by the stator-magnets alone, a type of hybrid-excited flux-switching (HEFS) machine is obtained by reducing the magnet length of an original FSPM machine and introducing a set of field windings into the saved space. In this paper, the steady-state characteristics, especially for the loaded performances of four prototyped HEFS machines, namely, PM-top, PM-middle-1, PM-middle-2, and PM-bottom, are comprehensively compared and evaluated based on both 2D and 3D finite element analysis. Also, the influences of PM materials including ferrite and NdFeB, respectively, on the characteristics of HEFS machines are covered. Particularly, the impacts of magnet movement in the corresponding slot on flux-regulating performances are studied in depth. The best overall performances employing NdFeB can be obtained when magnets are located near the air-gap. The FEA predictions are validated by experimental measurements on corresponding machine prototypes.