Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.) Abstract: A novel photonic fractional-order temporal differentiator is proposed based on the inverse Raman scattering (IRS) in the side-coupled silicon microring resonator. By controlling the power of the pump lightwave, the intracavity loss is adjusted and the coupling state of the microring resonator can be changed, so the continuously tunable differentiation order is achieved. The influences of input pulse width on the differentiation order and the output deviation are discussed. Due to the narrow bandwidth of IRS in silicon, the intracavity loss can be adjusted on a specific resonance while keeping the adjacent resonances undisturbed. It can be expected that the proposed scheme has the potential to realize different differentiation orders simultaneously at different resonant wavelengths. Yang, and X. Zhang, "Arbitrary-order bandwidth-tunable temporal differentiator using a programmable optical pulse shaper," IEEE Photon.