2020
DOI: 10.3934/dcds.2020177
|View full text |Cite
|
Sign up to set email alerts
|

A new type of non-landing exponential rays

Abstract: In this paper, we will construct a new type of non-landing exponential rays, each of whose accumulation sets is bounded, disjoint from the ray and homeomorphic to the closed topologist's sine curve.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 10 publications
0
0
0
1
Order By: Relevance
“…除了上面提到的着陆逃逸曲线, 20 世纪 90 年代开始, Devaney 等构造了一些非着陆的逃逸曲线, 其聚点集为无界的不可分割连续统 (参见文献 [234,241,617]). 付建勋、张高飞和张松等构造了聚点集 有界且非着陆的逃逸曲线并研究了它们的拓扑结构 (参见文献 [314,315]). 关于超越亚纯函数 Julia 连 通分支的可能拓扑结构参见文献 [252,488,489,623].…”
Section: Eremenkounclassified
“…除了上面提到的着陆逃逸曲线, 20 世纪 90 年代开始, Devaney 等构造了一些非着陆的逃逸曲线, 其聚点集为无界的不可分割连续统 (参见文献 [234,241,617]). 付建勋、张高飞和张松等构造了聚点集 有界且非着陆的逃逸曲线并研究了它们的拓扑结构 (参见文献 [314,315]). 关于超越亚纯函数 Julia 连 通分支的可能拓扑结构参见文献 [252,488,489,623].…”
Section: Eremenkounclassified