In this article, the question of how to sample the square amplitude of the radiated field in the framework of phaseless antenna diagnostics is addressed. In particular, the goal of the article is to find a discretization scheme that exploits a non-redundant number of samples and returns a discrete model whose mathematical properties are similar to those of the continuous one. To this end, at first, the lifting technique is used to obtain a linear representation of the square amplitude of the radiated field. Later, a discretization scheme based on the Shannon sampling theorem is exploited to discretize the continuous model. More in detail, the kernel of the related eigenvalue problem is first recast as the Fourier transform of a window function, and after, it is evaluated. Finally, the sampling theory approach is applied to obtain a discrete model whose singular values approximate all the relevant singular values of the continuous linear model. The study refers to a strip source whose square magnitude of the radiated field is observed in the Fresnel zone over a 2D observation domain.