In comparison with traditional point forecasting method, probability density forecasting can reflect the load fluctuation more effectively and provides more information. This paper proposes a hybrid hourly power load forecasting model, which integrates K-means clustering algorithm, Salp Swarm Algorithm (SSA), Least Square Support Vector Machine (LSSVM), and kernel density estimation (KDE) method. Firstly, the loads at 24 times a day are grouped into three categories according to the K-means clustering algorithm, which correspond to the valley period, flat period, and peak period of the load, respectively. Secondly, the load point forecasting value is obtained by LSSVM method optimized by SSA algorithm. Furthermore, the kernel density estimation method is employed to fit the forecasting error of SSA-LSSVM in different time periods, and the probability density function of the error distribution is obtained. The final load probability density forecasting result is obtained by combining the point forecasting value and the error fitting result, and then the upper and lower limits of the confidence interval under the given confidence level are solved. In this paper, the performance of the model is evaluated by two indicators named interval coverage and interval average width. Meanwhile, in comparison with several other models, it can be concluded that the proposed model can effectively improve the forecasting effect.