2018
DOI: 10.1063/1.5041947
|View full text |Cite
|
Sign up to set email alerts
|

A noncommutative discrete potential KdV lift

Abstract: In this paper, we construct a Grassmann extension of a Yang-Baxter map which first appeared in [16] and can be considered as a lift of the discrete potential Korteweg-de Vries (dpKdV) equation. This noncommutative extension satisfies the Yang-Baxter equation, and it admits a 3 × 3 Lax matrix. Moreover, we show that it can be squeezed down to a system of lattice equations which possesses a Lax representation and whose bosonic limit is the dpKdV equation. Finally, we consider commutative analogues of the constru… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
34
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 29 publications
(36 citation statements)
references
References 40 publications
0
34
0
2
Order By: Relevance
“…Many of our considerations here extend naturally to the dual number analogues of other discrete integrable systems, such as the family of maps in [13], which are connected with Gale-Robinson sequences and cluster algebras, or the higher genus analogues of (3.4) in [12]. There are already versions of Yang-Baxter maps that include Grassmann variables, together with associated integrable lattice equations that satisfy the multidimensional consistency property [16]. Hopefully some of these techniques could also shed more light on superfriezes and cluster superalgebras, as in [17,22], which are relevant to Ptolemy relations in super-Teichmüller theory [18].…”
Section: Discussionmentioning
confidence: 99%
“…Many of our considerations here extend naturally to the dual number analogues of other discrete integrable systems, such as the family of maps in [13], which are connected with Gale-Robinson sequences and cluster algebras, or the higher genus analogues of (3.4) in [12]. There are already versions of Yang-Baxter maps that include Grassmann variables, together with associated integrable lattice equations that satisfy the multidimensional consistency property [16]. Hopefully some of these techniques could also shed more light on superfriezes and cluster superalgebras, as in [17,22], which are relevant to Ptolemy relations in super-Teichmüller theory [18].…”
Section: Discussionmentioning
confidence: 99%
“…раздел 7). Зависимость оператора K от переменных m вводится посредством той же ∂-задачи: 19), но с нулевой асимптотикой, так что эта разность обращается в ноль в силу предположения об однозначной разрешимости. Рассмотрим следствия уравнений (2.15) для оператора K. Заметим, что этот оператор, как и любой оператор из рассматриваемого класса, удовлетворяет равенству (2.11),…”
Section: рух как пример общей конструкцииunclassified
“…Оно было выведено в работах [17], [18] и подробно обсуждалось в литературе вместе со своими неабелевыми обобщениями (см. работу [19] и цитированную в ней литературу). Мы привели здесь вывод этого уравнения как пример размерной редукции в рамках нашего подхода.…”
Section: рух как пример общей конструкцииunclassified
“…For example, the Schur functions when expressed in suitably scaled power sum functions (times of the KP hierarchy) provide polynomial τ -function solutions of the equations. Non-commutative extensions of integrable systems are of growing interest in mathematical physics [49,7,63,28,15,46,18,20,22,21].…”
Section: Introductionmentioning
confidence: 99%