A methodology is developed that determines age-specific transition rates between cell cycle phases during balanced growth by utilizing age-structured population balance equations. Age-distributed models are the simplest way to account for varied behavior of individual cells. However, this simplicity is offset by difficulties in making observations of age distributions, so age-distributed models are difficult to fit to experimental data. Herein, the proposed methodology is implemented to identify an age-structured model for human leukemia cells (Jurkat) based only on measurements of the total number density after the addition of bromodeoxyuridine partitions the total cell population into two subpopulations. Each of the subpopulations will temporarily undergo a period of unbalanced growth, which provides sufficient information to extract age-dependent transition rates, while the total cell population remains in balanced growth. The stipulation of initial balanced growth permits the derivation of age densities based on only age-dependent transition rates. In fitting the experimental data, a flexible transition rate representation, utilizing a series of cubic spline nodes, finds a bimodal G(0)/G(1) transition age probability distribution best fits the experimental data. This resolution may be unnecessary as convex combinations of more restricted transition rates derived from normalized Gaussian, lognormal, or skewed lognormal transition-age probability distributions corroborate the spline predictions, but require fewer parameters. The fit of data with a single log normal distribution is somewhat inferior suggesting the bimodal result as more likely. Regardless of the choice of basis functions, this methodology can identify age distributions, age-specific transition rates, and transition-age distributions during balanced growth conditions.